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Abstract

In this paper, we used a Bayesian model averaging (BMA) approach to analyse

the changes in rainfall extremes in the periods 2041–2070 and 2071–2099 over

northeast Bangladesh as a consequence of climate change. Climate change over

this region could potentially impact agricultural production, water resources man-

agement, and the overall economy of the country. We used six regional climate

models (RCMs) over the Coordinated Regional Downscaling Experiment South

Asia domain. We used one medium stabilization scenario (RCP4.5) and one high-

emission scenario (RCP8.5) for projecting the extreme rainfall indices. A multi-

model ensemble mean was generated using the BMA approach. The BMA mean

is a weighted average related to each RCM's predictive skill during the training

period. Most of the rainfall extremes are expected to increase in both pre-

monsoon (March–May) and monsoon (June–September) seasons in the future

compared with baseline (1976–2005). The average pre-monsoon rainfall of the

study area is projected to increase by 12.93 and 18.42% under RCP4.5 and 18.18

and 23.85% under RCP8.5 for the periods 2041–2070 and 2071–2099, respectively.
The average monsoon rainfall of the study area is projected to increase by 4.96

and 2.27% under RCP4.5 and 6.56 and 6.40% under RCP8.5 for the periods

2041–2070 and 2071–2099, respectively. All the extreme indices except consecu-

tive wet day are expected to change significantly at the 95% confidence level dur-

ing the pre-monsoon season. The study area will potentially be subjected to more

frequent floods in the future both in pre-monsoon and monsoon seasons as a con-

sequence of climate change. Notably, the intensity and the magnitude of flash

flooding in the pre-monsoon season are expected to increase more in the future

because the increase in extreme indices is more significant during that season.
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1 | INTRODUCTION

Rainfall is a significant concern for northeast Bangladesh
(Bremer, 2017). Heavy rain in the adjacent mountainous

region of India causes flash flooding during the pre-
monsoon season and prolongs riverine flooding during
the monsoon season. Pre-monsoon flash floods can
destroy the seasonal Boro rice harvest, which is the main
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crop of the region (Alam et al., 2010). Such events
severely impact individual farmers, families, communi-
ties, and the region's food security. Therefore, it is essen-
tial to understand the past and future trend of the
extreme rainfall events for future planning of water
resources management. This paper uses new observa-
tional records, state-of-the-art climate simulations, and
an advanced statistical method (namely Bayesian Model
Averaging [BMA]) to describe possible changes in future
rainfall extremes in northeast Bangladesh, during both
the pre-monsoon and monsoon seasons.

Northeast Bangladesh (Figure 1) is located within the
basin of the Meghna River. The total catchment area of
the Meghna River is 6,500 km2, of which roughly 33% lies
in northeast Bangladesh and 67% lies in India (Masood
and Takeuchi, 2016). The mountainous regions of the
Indian states of Assam, Meghalaya, and Tripura are
located upstream of the basin. The flat and low-lying areas
of Bangladesh are located downstream of these regions.
The mountains act as a barrier against the southwesterly
moisture flow from the Bay of Bengal. Orographic lifting
of moist air is one of the mechanisms that trigger rainfall
in the region (Ohsawa et al., 2001; Mahanta et al., 2013;
Sato, 2013; Stiller-Reeve et al., 2015). The rainfall over

northeast Bangladesh and adjoining Indian hills can cause
pre-monsoon flash floods and monsoon river floods in
northeast Bangladesh. If rainfall changes in the future,
how might that affect these events?

Kumar et al. (2006) and Revadekar et al. (2011)) stud-
ied the changes in seasonal rainfall and rainfall extremes,
respectively, at the end of the 21st century over India and
northeast Bangladesh. Nowreen et al. (2015) also studied
the changes in rainfall extremes in the 21st century over
northeast Bangladesh. These studies used an ensemble of
simulations from a single RCM (developed by Hadley Cen-
tre of UK Meteorology Office) under emission scenarios
(SRES A2, A1B, and B2) of IPCC AR4. The previous stud-
ies (Kumar et al., 2006; Revadekar et al., 2011; Nowreen
et al., 2015) found that one-day maximum rainfall, five-
day maximum rainfall, and total rainfall during the pre-
monsoon and monsoon seasons in northeast Bangladesh
are projected to increase in the 21st century. Several other
studies (Akhter et al., 2017, Chen, 2013, Chen and Sun,
2013, Masood et al. 2015, Xu et al., 2019, Wu and Huang,
2016) found that the extreme rainfall events over other
parts of Asia are projected to significantly increase at the
end of the 21st century.

To analyse future changes in rainfall extremes, we used
the general circulation models (GCMs). GCMs simulate the
present and future climate variability on global and continen-
tal scales under the different global warming scenarios or rep-
resentative concentration pathways (RCPs). However, the
coarse spatial resolution (100–300 km) of GCMs limits their
application for impact studies at the regional scale (Zorita and
Von Storch, 1999). Under the Coordinated Regional Climate
Downscaling Experiment (CORDEX) of the World Climate
Research Programme (WCRP), GCMs have downscaled with
RCMs in a finer spatial resolution (10–50 km) under four dif-
ferent RCPs to assess the climate change impacts on human
and natural systems at the regional to local scale (Giorgi et al.,
2009). The RCP scenarios evolve towards different radiative
forcing at the end of the 21st century. For example, scenario
RCP4.5 shows an increase in radiative forcing of 4.5 W m−2

by the end of the century relative to the pre-industrial condi-
tions (Jacob et al., 2014).

It is widely accepted that there are lots of uncertainty
sources involved in climate change impact assessment.
The primary sources of uncertainty in climate projections
are the uncertainty in emission scenarios, model configu-
ration, and model internal variability (Kay et al., 2009; Wu
et al., 2015; Xu et al., 2019). The uncertainty in emission
scenarios can be examined by simulating different emis-
sion scenarios. The uncertainty in model configuration
can be explored by using different model configurations
(e.g., physics parameters) within the same modelling sys-
tem. The uncertainty in model internal variability can be
examined by executing different realizations of the same

FIGURE 1 Study area with rainfall stations [Colour figure can

be viewed at wileyonlinelibrary.com]
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scenario using different initial conditions (Giorgi et al.,
2009). These uncertainties in climate change projections
need to be described fully to provide useful information
for impact assessment studies. Where possible, these
uncertainties may need to be reduced. Previous studies
(e.g., Kumar et al., 2006; Revadekar et al., 2011; Nowreen
et al., 2015) on the study area were unable to describe the
entire range of uncertainties because they used an ensem-
ble of simulations from a single RCM (PRECIS-developed
by Hadley Centre of UK Met Office). However, in this
study, we used daily rainfall data from six RCMs over
CORDEX South Asia domain (Table 1) under RCP4.5 as
well as RCP8.5 to describe the entire uncertainty ranges as
much as possible.

The downscaled rainfall data from the RCMs are
affected by biases inherited from the forcing GCMs (Kato
et al., 2001). Even within a single geographic region, differ-
ent RCMs may produce different results due to their model
fundamentals and climate forcing (Rauscher et al.+, 2010;
Déqué et al., 2012; Mearns et al., 2012; Zhang et al., 2016).
The biases in the RCMs include too much drizzle, errors in
the mean, and failure to simulate heavy rainfall events
(Piani et al., 2010). Therefore, the output from RCMs needs
to be corrected before applying for climate change impact
studies (Maraun et al., 2010; Teutschbein and Seibert, 2010;
Winkler et al., 2011). To correct the biases, we first need a
set of observational data as ground truth. For this study,
we used daily rainfall data from six rainfall stations of

northeast Bangladesh (Table 2). Among these, five stations
are maintained by the Bangladesh Water Development
Board and one station is maintained by the Bangladesh
Meteorological Department. Using these observations, we
can reduce the biases in the RCM model data.

In recent years, several studies investigated different
bias correction methods to provide a reliable estimator of
observed precipitation climatology given RCM output
(e.g., Chen et al., 2011; Turco et al., 2011; Teutschbein and
Seibert, 2012; Themeßl et al., 2012). The simplest method
is the delta correction method in which an average bias
(delta) for a specified period (Lehner et al., 2007) is used to
correct the bias. A linear transformation function between
one or more predictors and the predictand is used in mul-
tiple linear regression method (e.g., Hay and Clark, 2003;
Horton et al., 2006). This method is used to adjust mean
and variance only of the observed and the simulated rain-
fall. Alternatively, the local intensity scaling method can
adjust the mean as well as both wet-day frequencies and
wet-day intensities of precipitation time series (Schmidli
and Frei, 2005). The power transformation method cor-
rects the mean and variance of precipitation by applying a
non-linear correction in an exponential form (Leander
and Buishand, 2007; Leander et al., 2008). In this method,
the long-term monthly mean of the daily simulated precip-
itation series is mapped with the monthly mean of
observed precipitations. Distribution mapping is a rela-
tively modern approach in which the distribution of RCM

TABLE 1 List of RCMs and their

driving models
RCM Driving GCM Experiment name Institute

ACCESS ACCESS1-0 ACCESS-CSIRO-CCAM CSIRO

CCSM4 CCSM4 CCSM4-CSIRO-CCAM CSIRO

CNRM CNRM-CM5 CNRM-CM5-CSIRO-CCAM CSIRO

MPI MPI-ESM-LR MPI-ESM-LR-CSIRO-CCAM CSIRO

MPI- REMO MPI-M-MPI-ESM-LR MPI-CSC-REMO2009 MPI-CSC

SMHI ICHEC, EC-EARTH ICHEC-EC-EARTH-SMHI-RCA4 SMHI

TABLE 2 List of rainfall stations and their locations. The mean of the pre-monsoon and monsoon rainfall was calculated for the period

of 1976–2005

Station name District
Location of station
(latitude, longitude)

Pre-monsoon mean
rainfall (mm)

Monsoon mean
rainfall (mm)

Sylhet Sylhet 24.90�N, 91.88�E 1,087 2,733

Sunamganj Sunamganj 25.06�N, 91.44�E 1,095 4,435

Netrokona Netrokona 24.98�N, 90.62�E 670 2,485

Moulvibazar Moulvibazar 24.49�N, 91.70�E 740 1890

Habiganj Habiganj 24.39�N, 91.41�E 695 1,525

Bhairabbazar Kishoreganj 24.05�N, 91.00�E 580 1,330
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simulated climate data is matched with the distribution of
the observed climate data to correct the distribution of the
RCM simulated climate data. A transfer function is gener-
ated to shift the occurrence distributions of precipitation and
temperature (Sennikovs and Bethers, 2009). Among the vari-
ous methods, distribution mapping-based methods are get-
ting more popular and have been applied to the downscale
and correct temperature and precipitation data from RCMs
in hydrological studies (Ashfaq et al., 2010; Piani et al., 2010;
Dosio and Paruolo, 2011; Themeßl et al., 2012). Therefore,
in this study, we used the quantile mapping bias correction
method because it has been successfully and widely applied
in climate change studies (Teutschbein and Seibert, 2010,
2012; Räisänen and Räty, 2013; Villani et al., 2015). In this
method, cumulative distribution functions (CDFs) were first
generated for both the observed and RCM-simulated rain-
fall. Thereafter, the CDF from an RCM simulated value is
matched to the observed value at the same CDF over a spec-
ified base period (Kim et al., 2015). All the daily rainfall
values from the RCMs are scaled up or down according to
the adjusted CDF, which results in six corrected RCMs.

With the six corrected RCM simulations, we can take a
multi-model ensemble mean to analyse possible future
changes. Multi-model ensemble means have been shown
to outperform individual model output also at the regional
level (Pierce et al., 2009). Among several methods, the
BMA method provides a more reasonable ensemble mean
(Raftery et al., 2005; Vrugt and Robinson, 2007; Zhu et al.,
2013) because it gives higher weight to the RCM with bet-
ter predictive skill in the training period (Zhang et al.,
2019). To the best of our knowledge, this is the first study
on rainfall changes over northeast Bangladesh using
RCMs under the CORDEX framework and the observa-
tional data set we have at our disposal.

This paper is divided into four sections. Section 2
covers a brief description of the data and methodology,
including bias correction and multi-model ensemble mean
method. Section 3 presents the discussion on results,
which include BMA weights and future changes in rainfall
extremes. Conclusions are presented in Section 4.

2 | DATA AND METHOD

2.1 | Study area

The study area is in northeast Bangladesh, which is located
in the downstream part of the Meghna basin. It is character-
ized by a large number of extensive wetlands, which are
locally called ‘haors’. The haors are bowl-shaped, low-lying
floodplains with unique characteristics—they are dry in the
winter months and flooded during the monsoon season. The
region is also characterized by several special topographical

features, such as hills, hillocks, extensive protected forests,
and large tea and rubber gardens. From a climatic perspec-
tive, the region is categorized by sub-tropical humid condi-
tions (Hasan et al., 2012). The dry winter (December to
February), pre-monsoon (March to May), monsoon (June to
September), and post-monsoon (October to November) are
the predominant seasons of this area (Islam and Uyeda,
2007; Rafiuddin et al., 2010). The haors are mostly dry during
December to May, therefore Boro rice is extensively culti-
vated in during this time. The Boro rice harvest during the
pre-monsoon accounts for the majority of agricultural output
(Alam et al., 2010) and contributes significantly to the coun-
try's total rice production. Pre-monsoon rainfall is, therefore,
a significant concern for this region.

Cherrapunji, one of the wettest places on Earth, is
located upstream of the Meghna basin. The mountainous
regions of the Indian states of Assam, Meghalaya, and Tri-
pura act as a barrier against humid southwesterly flows
from the Bay of Bengal. Orographic lifting and other
mechanisms (Ohsawa et al., 2001; Mahanta et al., 2013;
Sato, 2013; Stiller-Reeve et al., 2015) cause the heavy rain-
fall over the Meghna basin. This heavy rainfall during
April and May causes flash floods in the flat and low-lying
areas of Bangladesh and damages entire crops, as seen in
April 2017. However, in this study, we only considered
the downstream part of the basin due to the limitation of
the observed data from the upstream part of the basin.

2.2 | Data

We used gridded daily rainfall data from six RCMs over COR-
DEX South Asia domain (Table 1) and observed daily rainfall
data from six rainfall stations in northeast Bangladesh
(Table 2) for this study. Here, we used the last 30 years
(1976–2005) of the historical RCM runs and the
corresponding observed daily rainfall from six weather sta-
tions in northeast Bangladesh. We used daily rainfall from
RCMs for RCP4.5 as well as RCP8.5 for the period of
2041–2070 and 2071–2099 to project future rainfall extremes
for the study area. The output of RCMs is available at the spa-
tial resolution of 0.5�. The locations of weather stations do
not match RCM grid points exactly. In this situation, we cal-
culated RCM output at a weather station's location by inter-
polating (Inverse DistanceWeighting method) four RCM grid
points within which the station lies. Details of the RCMs and
rainfall stations are presented in Tables 1 and 2, respectively.

2.3 | Methodology

In this study, we determined the changes in pre-monsoon
and monsoon extremes rainfall indices (listed in Table 3)
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of northeast Bangladesh for 2041–2070 and 2071–2099
from six RCMs over the CORDEX South Asia region. We
used 1976–2005 as a reference period and 2041–2070 and
2071–2099 as the two scenario periods in our analysis.

The RCMs often show a considerable systematic error
that limits their application in impact studies. In climate
change impact studies, the most common way to deal
with this error is to apply bias correction on RCM out-
puts. In this study, we used the quantile mapping method
to daily data on a seasonal basis. After correcting the
biases, the multi-model ensemble mean of the extreme
rainfall indices was generated by the BMA approach.

2.3.1 | Quantile mapping bias correction

Both the parametric and nonparametric quantile map-
ping method are widely used for bias correction of the cli-
mate model. However, the parametric method generally
yields a better result (Kim et al., 2015) than the nonpara-
metric method. This is because the parametric method
can adjust the distributions of model output to agree with
observed distributions. For this study, we chose gamma
distribution method because it generally represents rain-
fall data well, particularly for monthly and seasonal
values (Katz, 1999; Piani et al., 2010; Kim et al., 2015).
We applied this method to both the reference and sce-
nario periods. Generally, RCMs simulate too many rain-
fall events with low intensity compared with the
observed rainfall, which is widely known as the drizzle
effect (Kim et al., 2015). A brief procedure of the quantile
mapping bias correction is as follows.

Step 1: In order to adjust the wet-day frequency of
RCM-simulated rainfall according to observed rainfall, a
cut-off threshold corresponding to the wet day (≥1 mm)
is selected before applying quantile mapping method.

Step 2: The gamma CDF of the observed and RCM ref-
erence rainfall is determined for each month separately.

Step 3: The CDF of RCM reference simulation is
mapped with CDF of observations for generating the
transfer function. The schematic representation is pres-
ented in Figure 2.

Step 4: Then, this correction function is finally used
to correct the RCM scenario period. The equation of the
transfer function can be expressed as:

P*
ref dð Þ=F−1

γ Fγ Pref dð Þjαref,m,βref,m
� �jαobs,m,βobs,m

� � ð1Þ

P*
scen dð Þ=F−1

γ Fγ Pscen dð Þjαref,m,βref,m
� �jαobs,m,βobs,m

� � ð2Þ

where Pref (d) is the raw daily rainfall for reference simu-
lation; Pscen(d) is the raw daily rainfall for scenario simu-
lation; P*

ref dð Þ is the bias-corrected daily rainfall for
reference simulation; P*

scen dð Þ is the bias-corrected daily
rainfall for scenario simulation; F−1

γ is the transfer

TABLE 3 List of indices of rainfall extremes used for future projection and their definition

Index Descriptive name Definition Unit

RX1 Daily maximum rainfall Seasonal maximum 1-day rainfall mm

RX5 5-day maximum rainfall Seasonal maximum 5-day rainfall mm

R25 Frequencies in days Number of extremely heavy rainfall days (RR ≥25 mm) during pre-monsoon days

R50 Frequencies in days Number of extremely heavy rainfall days (RR ≥50 mm) during monsoon. days

PRCPTOT Seasonal total wet day
precipitation

Seasonal total precipitation in wet days
(RR ≥1 mm)

mm

CWD Consecutive wet days Maximum number of consecutive wet days in a season with RR ≥1 mm days

CDD Consecutive dry days Maximum number of consecutive dry days in a season with RR < 1 mm days

SDII Simple daily intensity index Seasonal total precipitation divided by the number of wet days in the season mm/day

R95p Very wet days Seasonal total PRCP when RR > 95th percentile mm

R99p Extremely wet days Seasonal total PRCP when RR > 99th percentile mm

FIGURE 2 A schematic representation of quantile mapping

bias-correction approach. A transfer function is used to correct

rainfall intensity for RCM simulations during the reference and

scenario period [Colour figure can be viewed at

wileyonlinelibrary.com]
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function for gamma distribution; αobs, m is the shape
parameter of gamma distribution for observed data of
month m; αref, m is the shape parameter of gamma distri-
bution for the reference period of month m; βobs, m is the
scale parameter of gamma distribution for observed data
of month m; βref, m is the scale parameter of gamma dis-
tribution for the reference period of month m.

2.3.2 | Bayesian model averaging (BMA)
Approach

BMA produces a complete PDF of the ensemble mean and
quantifies the associated uncertainty of the forecasts. The
BMA method has become increasingly popular because it
produces accurate and reliable multi-model ensemble mean
(Raftery et al., 1997; Neuman, 2003; Ajami et al., 2007). In
this approach, the predictive probability density function
(PDF) of the ensemble mean is the weighted average of the
conditional PDF of an individual model. These weights are
posterior probabilities of the models generating the fore-
casts and reflect the relative contributions of each model to
the overall predictive skill. Hoeting et al. (1999) comprehen-
sively described the BMA theory and Raftery et al. (2005)
extended it for statistical post-processing of forecast ensem-
bles. Given the training data YT and k climate models
(M1….Mk), the forecast PDF of a variable Y is given by:

P Y jY 1,Y 2,…::Ykð Þ=
Xk

k=1

P Y jMkð ÞP MkjYT
� � ð3Þ

where P(YjMk) is the conditional PDF of Y on Mk, given
that Mk is the best forecast in the ensemble and P(MkjYT)
is the posterior probability of the model Mk being the best
one given the training data. The posterior model probabili-
ties reflect how the model Mk performs to fit the training
data and can be viewed as weights that are non-negative
and add up to one so that

Pk
k=1wk=

Pk
k=1P MkjYT

� �
=1.

Thus, Equation (3) can be written as

P Y jY 1,Y 2,…::Ykð Þ=
Xk
k=1

wkP Y jMkð Þ: ð4Þ

The BMA method assumes that the conditional PDF,
P(YjMk), of the individual model can be approximated by
the normal distribution with mean ak + bkMk and stan-
dard deviation (SD) σk, which is given by.

P Y jMkð Þ�Nðak+bkMk,σ2k ð5Þ

The values for ak and bk are estimated by simple linear
regression of P(YjMk) on Mk for each model. In this study,

we determined BMA weight for all extreme rainfall indices
(listed in Table 3) separately. At first, we derived the
monthly values of extreme rainfall indices from a daily time
series. Then, we separated the indices of pre-monsoon and
monsoon seasons. By doing so, we have three values for the
pre-monsoon and four values for the monsoon season for
each index. In this way, for a 30-year period, we obtain a
time series consisting of 90 values for the pre-monsoon sea-
son and 120 values for the monsoon season for the BMA
computation. However, beforehand, we need to know the
distribution of the indices according to the above discus-
sions. For example, we fitted monthly rainfall totals of a
particular season for different distributions (e.g., normal,
gamma, and exponential) to determine which specific dis-
tribution data sample is best fitted. Using the Kolmogorov–
Smirnov test and graphical techniques (histograms and
density estimate), we found that the gamma distribution
best fits the monthly rainfall data for the study area. As
an example, a data histogram and the corresponding
fitted gamma PDF for monthly rainfall of Sylhet station
are shown in Figure 3. As expected, rainfall data are
positively skewed with a long tail to the right of the
distribution for both pre-monsoon and monsoon seasons.
The gamma distribution, while being asymmetric and
bounded on the left by zero, provides a good fit to the
empirical data, particularly in the extreme left and right
tails of the distribution.

Therefore, we considered the gamma distribution and
modified the conditional PDF in Equation 5. The condi-
tional PDF for the gamma distribution with shape param-
eter α and scale parameter β can be given by

P Y jMKð Þ� 1
βГ αð ÞY

α−1exp −Y=β
� � ð6Þ

for Y > 0. P(YjMK) = 0 for Y ≤ 0. The mean of this distri-
bution is μ = αβ and its variance is σ2 = αβ2. The parame-
ters αk=μ2k=σ

2
k and βk=σ2k=μk of the gamma distribution

for the actual forecast Yk of a particular ensemble mem-
ber can be derived from the following relationship

μk=Yk ð7Þ

and

σ2k=c0Yk+c1 ð8Þ

where c0 and c1 are the coefficients of regression.
Thus BMA multi-model ensemble mean is a condi-

tional expectation, which is defined as

�Y =E Y jM1,……Mkd e: ð9Þ
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The values of wk, σk, c0, and c1 are estimated by the
maximum likelihood (ML) function from simulated data
set for the training period. The log-likelihood function L
for the BMA multi-model ensemble mean in Equation (9)
can be given as

L w1,…:,wk,σ2jM1,…Mk, P Y jMKð Þ� �

=
XN

n=1
log

Xk

k=1
wk P YnjMknð Þ

� � ð10Þ

where N is the total number of measurements in the
training dataset.

To derive the ML estimation of model parameters, a
common approach is to use an expectation–maximization
algorithm (Chu and Zhao, 2011; Chu et al., 2016). Given
an initial set of the model parameters, the expectation–
maximization algorithm will converge quickly to a fixed
set of parameter estimations after a few iterations. How-
ever, there are some inherent limitations of expectation–
maximization: (a) it provides a local optimal solution
instead of the global convergence and (b) it does not yield
the uncertainty associated with final BMA weights and the
variance (Vrugt et al., 2008). To overcome this limitation,
we optimize the ML function using the Differential

Evolution Adaptive Metropolis (DREAM) Markov Chain
Monte Carlo algorithm for estimating the BMA weights
and variance (Vrugt et al., 2008; Vrugt, 2015; Vrugt, 2016).
The DREAM scheme is adapted from the Shuffled Com-
plex Evolution Metropolis global optimization algorithm
and is capable of running multiple chains simultaneously
for searching the global optimal solution (Vrugt
et al., 2008).

3 | RESULTS AND DISCUSSIONS

3.1 | Quantile mapping bias correction

We performed the bias correction on daily rainfall data for
the pre-monsoon and monsoon season independently after
modifying wet-day frequencies of the RCM-simulated rain-
fall as discussed before. As an example, we use the results
from the Sylhet station (Figure 4). The result of this bias
correction for other stations is similar to the result shown
in Figure 4 (see Figures S1 and S2).

Most of the uncorrected RCMs overestimate the high-
intensity observed rainfall. However, it underestimates
the low-intensity rainfall and produces too many drizzle

FIGURE 3 Histogram and gamma PDF for

monthly rainfall of Sylhet station during (a) pre-

monsoon and (b) monsoon [Colour figure can

be viewed at wileyonlinelibrary.com]
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days during the pre-monsoon season (Figure 4). Seasonal
total rainfall of Sylhet station before and after bias correc-
tion is shown in Table 4 as an example. All RCMs simu-
late an almost equal amount of pre-monsoon rainfall
except SMHI for Sylhet station. Note that the simulated
seasonal rainfall from four (ACCESS, CCSM4, MPI, and
MPI-REMO) of six RCMs is close to the observed amount
(1,087 mm). After bias correction, the RCM simulation is
closer to the actual seasonal rainfall, and this improve-
ment is particularly evident for SMHI and CNRM RCMs.
Among all six RCMs, the most substantial seasonal rain-
fall difference between simulation and observation is
only 28 mm after bias correction.

During the monsoon season, all six RCMs underesti-
mate the observed daily rainfall considerably from low to
high intensity (Figure 4). As a result, all the RCMs under-
estimate the seasonal rainfall (Table 4). The RCM rainfall
for Sylhet also showed similar behavior at other stations.
However, after the bias correction, the RCM rainfall dis-
tributions and total amounts are similar to those of the
observed rainfall. The most substantial seasonal rainfall
difference between RCMs and the observation is
only 33 mm.

A comparison of the variability (e.g., SD) between the
bias-corrected and uncorrected simulations is presented
in Figures 5 and 6. From the figures, we can see that the
SD of the RCMs was not close to the SD of the observed
rainfall before bias correction for both pre-monsoon and

monsoon season. However, the SD of all RCMs was
adjusted almost equal to the SD of the observed rainfall
after bias correction.

3.2 | Bayesian model averaging

Although we calculated BMA weights for all extreme
rainfall indices listed in Table 3, the results of the BMA
weights for the pre-monsoon and monsoon rainfall are
presented here as an example. Figures 7 and 8 show the
histograms of the posterior marginal PDFs of the BMA
weights for monthly rainfall totals of the individual
ensemble members during the training period of Sylhet
station for the pre-monsoon and monsoon season,
respectively. All of the histograms exhibit gamma distri-
bution, as discussed earlier. Therefore, we have high
confidence in the weights applied to each of the individ-
ual models. The optimal values derived with the MCMC
algorithm are indicated separately in each panel with an
‘x’ symbol. The optimal BMA weights for rainfall of six
rainfall stations are presented in Figure 9. As noted pre-
viously, the BMA weights were calculated separately for
the monthly rainfall during the pre-monsoon and mon-
soon seasons.

The BMA weight reflects the overall performance of
the RCMs in capturing monthly rainfall for the study
area. The RCMs showed better performance at one

FIGURE 4 Quantile–quantile
plots of simulated daily rainfall by

RCMs against observed daily

rainfall for Sylhet during (a) pre-

monsoon and (b) monsoon. The

colour markers denote uncorrected

and black markers denote bias-

corrected daily rainfall [Colour

figure can be viewed at

wileyonlinelibrary.com]

TABLE 4 Seasonal rainfall for Sylhet station before and after bias correction

Observed ACCESS CCSM4 CNRM MPI MPI- REMO SMHI

Pre-monsoon Before bias correction 1,087 1,116 1,050 1,239 1,134 1,088 386

After bias correction 1,087 1,090 1,072 1,079 1,081 1,059 1,076

Monsoon Before bias correction 2,733 1,171 1,168 976 1,049 1,760 982

After bias correction 2,733 2,707 2,700 2,710 2,719 2,712 2,712
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FIGURE 5 Comparison of the variability (i.e., standard deviation) between the bias-corrected and uncorrected simulations during the

historical period (1976–2005) for pre-monsoon [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Comparison of the variability (i.e., standard deviation) between the bias-corrected and uncorrected simulations during the

historical period (1976–2005) for monsoon [Colour figure can be viewed at wileyonlinelibrary.com]

3240 BASHER ET AL.



station and worse performance at another station. No
particular RCM was consistent for capturing higher BMA
weights for all stations (Figure 9). Similarly, the RCM
performances varied in different seasons. This result
infers that there is no single best or worst model in simu-
lating rainfall variation over the region, in accordance
with the concept of the multi-model approach.

We calculated the multi-model ensemble mean of
rainfall using BMA weights and by the simple arithmetic
ensemble mean (AEM). To evaluate the performance of

BMA, we estimated the normalized root mean square
error (NRMSE) (RMSE was normalized by the SD of
observed data) for individual RCMs, BMA, and AEM
(Table 5). It is noteworthy that the NRMSE of the
commonly used AEM is always smaller than the
corresponding statistic from each RCM for both seasons.
This result is consistent with the general notion that the
ensemble mean usually outperforms all or most of indi-
vidual ensemble members (Raftery et al., 2005). Relative
to AEM, the NRMSE of the BMA is even smaller. The

FIGURE 7 Marginal posterior PDFs of the

DREAM-derived BMA weights of monthly

rainfall totals for pre-monsoon Sylhet station.

The MCMC-derived solution is indicated in

each panel by the symbol ‘X’ [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 8 Marginal posterior PDFs of the

DREAM-derived BMA weights of monthly

rainfall totals for monsoon Sylhet station. The

MCMC-derived solution is indicated in each

panel by the symbol ‘X’ [Colour figure can be

viewed at wileyonlinelibrary.com]
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NRMSE of BMA is smaller than all participating RCMs
for all stations and seasons. For all six stations, the aver-
age percentage of decrease in NRMSE from the AEM to
BMA varies from 3% during the pre-monsoon to 22%
during the monsoon season.

We assume that the BMA weights should reflect rela-
tive model skill in the multi-model ensemble approach. In
other words, we anticipate that the RCMs with higher
BMA weights should produce lower NRMSE. In fact, in
some instances, the weights of the RCMs were not consis-
tent with NRMSE. For example, the model MPI received
the second-highest BMA weight at Sylhet station during

the pre-monsoon season (Figure 9a) but ranked the third
lowest NRMSE among the six RCMs (Table 5). The paired
correlations could explain this inconsistent nature
between individual simulations in the ensemble. Some-
times, the RCMs with the higher BMA weight may have
a lesser correlation with the observed data and vice versa.
This is due to a substantial amount of redundancy and
results in de-weighing the best single simulation and
overweighting of the worst single simulation. Other
authors (Vrugt et al., 2008; Woehling and Vrugt, 2008;
Zhu et al., 2013) also found this kind of inconsistency in
their studies.

FIGURE 9 BMA weights of

each individual RCM for monthly

rainfall totals for different stations

during historical period (1976–2005):
(a) pre-monsoon and (b) monsoon

[Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 5 Normalized root mean square error (NRMSE) for seasonal rainfall of different RCMs, arithmetic ensemble mean (AEM), and

BMA during historical period (1976–2005)

ACCESS CCSM4 CNRM MPI-REMO MPI SMHI AEM BMA

Pre-monsoon Sylhet 1.15 1.35 0.94 1.12 1.14 1.15 0.88 0.86

Sunamganj 1.04 1.32 1.12 1.06 1.02 1.22 0.80 0.78

Netrokona 1.17 1.01 1.10 0.96 1.13 1.22 0.75 0.72

Moulvibazar 1.05 1.36 1.05 1.33 1.30 0.99 0.81 0.76

Habiganj 1.14 1.58 1.20 1.34 1.40 1.02 0.82 0.78

Bhiarabbazar 1.37 1.53 1.39 0.97 1.66 1.19 0.92 0.78

Monsoon Sylhet 1.82 2.33 1.89 1.58 2.42 1.79 1.18 1.03

Sunamganj 1.89 1.98 1.89 1.58 2.37 1.84 1.39 1.01

Netrokona 2.25 1.95 1.95 1.72 2.34 1.76 1.22 1.07

Moulvibazar 1.82 2.00 1.97 1.60 1.99 1.57 1.19 1.13

Habiganj 2.01 2.32 2.48 1.76 1.94 1.85 1.65 1.24

Bhiarabbazar 1.81 2.22 2.29 1.62 1.98 1.86 1.43 1.26
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3.3 | Changes in future rainfall extremes

We estimate the changes in future rainfall extremes
(listed in Table 2) for all RCMs (listed in Table 1) and for
their ensemble mean generated by BMA weight.
Figure 10 presents the variability of the mean changes in
extreme indices with respect to the baseline for Sylhet
station. During pre-monsoon, among all extreme indices,
the variability of the relative changes is more significant
for the one-day maximum rainfall (RX1) and less for the
simple daily Intensity Index (SDII). This result implies
that more uncertainty is associated with RX1 and less for
SDII (Figure 10a). This result is not unexpected because
the seasonal maximum daily rainfall is the single largest
value in a season and the year to year variability of the
value is large, while the rainfall intensity index is a quan-
tity averaged over many days in a season. The uncer-
tainty for all extremes indices is significant for the far
future (2071–2099) and higher RCP (RCP8.5). Consider-
ing all RCMs, the mean relative changes are positive for
all extreme indices except for consecutive dry days

(CDDs) and consecutive wet days (CWDs) during the
pre-monsoon at Sylhet station. Therefore, the CDDs
become shorter over time. Similar to pre-monsoon, the
uncertainty in relative changes is lesser for SDII during
the monsoon (Figure 10b). Also note the large variability
for CWD, CDD, and R50. The range of variability for
changes in rainfall extremes is more significant during
the pre-monsoon than the monsoon season. The variabil-
ity of the extreme indices for other stations exhibit almost
similar patterns to those of Sylhet (see Figures S3–S7).

To get an overview of the likely changes in extreme
indices over the whole region, we looked at the range of
the ensemble mean changes for all stations (Figure 11).
In the pre-monsoon season (Figure 11a), the interquartile
range of box plot is negative for CDD and positive for
RX1, RX5, PRCPTOT, R25, SDII, R95P, and R99P in
future time slices under the RCP4.5 and RCP8.5 over the
study area. This phenomenon indicates an increasing
level of changes for those indices with a positive range in
the future. During the monsoon season (Figure 11b), the
interquartile range of box plot is relatively smaller at

FIGURE 10 Box and whisker

plots for changes in rainfall

extremes at Sylhet station

considering all RCMs for two future

time slices (2041–2070 and
2071–2099) relative to the baseline

period (1976–2005) under RCP4.5
and RCP8.5 scenarios: (a) pre-

monsoon and (b) monsoon [Colour

figure can be viewed at

wileyonlinelibrary.com]
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lower RCP (RCP4.5) during near future (2041–2070).
However, it becomes more significant for higher RCP
(RCP8.5) and the far future (2071–2099). The variability
of all extreme indices is more significant during
2071–2099 under the RCP8.5 for both seasons than
others. This result indicates that there is considerably
more uncertainty associated with RCMs in projecting
rainfall extremes as the RCP increases and time slice pro-
gresses from mid-century to the late century. Another
important point is that the interquartile ranges of all
extreme indices except CDD and CWD in both seasons
are positive. This positive interquartile ranges of CDD
and CWD means that all RCMs projected positive
change. This result makes us more confident that these
extreme indices are likely to increase in the future. On
the other hand, the interquartile ranges of CDD in mon-
soon and CWD in both seasons vary between positive
and negative values though their median values are posi-
tive. Therefore, we are less confident inferring that CDD
and CWD are likely to increase in the future.

Average changes in rainfall extremes over the study
area considering all stations multi-model ensemble mean
derived by BMA are presented in Figure 12. All the
extreme indices are projected to increase in the future
except for a decrease in CDD and a slight decrease in
CWD under RCP8.5 for 2071–2099 during the pre-
monsoon season. During monsoon, all the extreme rain-
fall indices are likely to increase in the future under all
scenarios (Figure 12b). However, the increasing rate of
extreme indices is generally larger in pre-monsoon sea-
son than monsoon season. Moreover, all the extreme
indices except CWD are likely to change significantly at
the 95% confidence level during the pre-monsoon season
(see Table 6). The average pre-monsoon rainfall of the
study area is projected to increase by 12.93% for near
future and 18.42% for far future under RCP4.5. Under the
RCP8.5, it is projected to increase by 18.18% in the near
future and 23.85% in far future (Figure 12a). During the
monsoon, it is projected to increase by 4.96% in the near
future and 2.27% in the far future under the RCP4.5, and

FIGURE 11 Box and whisker

plots for changes of rainfall

extremes over the study area

considering all model ensemble

mean derived by BMA for two

future time slices (2041–2070 and

2071–2099) relative to the baseline

period (1976–2005) under RCP4.5
and RCP8.5 scenarios: (a) pre-

monsoon and (b) monsoon [Colour

figure can be viewed at

wileyonlinelibrary.com]
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6.56% in the near future and 6.40% in far future under
the RCP8.5. The results of this study are similar to studies
(e.g., Akhter et al., 2017, Chen, 2013, Chen and Sun,
2013, Masood et al. 2015, Xu et al., 2019, Wu and Huang,
2016) conducted over several other countries in Asia. In
those studies, they found that the extreme rainfall events
over other parts of Asia are projected to significantly
increase at the end of the 21st century. However, this
study combined bias corrected multi-model ensemble
means using BMA method to confirm such findings with
a greater accuracy as it gives higher weight to the RCM
with better predictive skill in the training period.

This increase in rainfall extremes in a warming world
can be understood either by the dynamic process or the
thermodynamic process (Vittal et al., 2016). In thermody-
namic process, the intensity of extreme rainfall increases
as temperature increases, which can be explained by the
Clausius–Clapeyron (C-C) relationship. The atmospheric
moisture-holding capacity is likely to increase with sur-
face temperature according to the C-C equation (Panthou
et al., 2014). Several studies (Vittal et al., 2016; Pfahl
et al., 2017; Mukherjee et al., 2018) suggest that increased

extreme rainfall over Indian is related to the dynamic
process (changes in circulation pattern) rather than the
thermodynamic process (e.g., changes in atmospheric
moisture content). Moreover, the moisture availability is
a more dominant factor than moisture-holding the capac-
ity for changing extreme rainfall over this region (Vittal
et al., 2016). This conclusion is further supported by
Turner and Annamalai (2012) who argued that the
increased rainfall is generally characterized by increased
land-sea thermal contrast and atmospheric moisture con-
tent over the warmer Indian Ocean due to global
warming. Several other studies (e.g., Cherchi et al., 2011;
Asharaf and Ahrens, 2015; Sabeerali et al., 2015;
Sharmila et al., 2015; Akhter et al., 2017) also argued that
this increase in rainfall might be attributed to the
increase of low-level (850 hPa) moisture content resulting
from increased temperature due to global warming. For
these reasons, due to climate change, the study area is
expected to experience more frequent floods in the future
in both the pre-monsoon and monsoon season. In partic-
ular, the intensity and magnitude of the flash flood in
pre-monsoon are likely to increase more in the future as

FIGURE 12 Average changes

in rainfall extremes over the study

area considering all model ensemble

means derived by BMA for two

future time slices (2041–2070 and

2071–2099) relative to the baseline

period (1976–2005) under RCP4.5
and RCP8.5 scenarios: (a) pre-

monsoon and (b) monsoon [Colour

figure can be viewed at

wileyonlinelibrary.com]
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a result of the significant increase in the most extreme
indices related to the occurrence of flash floods
(e.g., PRCPTOT, RX1, SDII, R95p, and R99p) with a high
decrease in CDD. This situation is projected to be more
intense in the far future under the higher emission
scenario.

4 | CONCLUSIONS

In this study, we analysed the impact of climate change
on extreme rainfall in northeast Bangladesh using six
RCMs over CORDEX South Asia domain under the
RCP4.5 and RCP8.5. Generally, the RCMs are affected by
biases inherited from the driving GCMs. We found that
the RCMs overestimate the heavy rainfall events and
underestimate low rainfall events during pre-monsoon
season, and underestimate both during the monsoon sea-
son. Therefore, we applied the quantile mapping method
to correct the bias associated with RCMs. We then used
the BMA approach to generate the multi-model ensemble
mean. The BMA mean is a weighted average related to
each RCM's predictive skill. A closer look at each RCM
showed that no single model was best or worst in simu-
lating rainfall variations over northeast Bangladesh.
However, the BMA produced more reliable results

because NRMSE was lower than all six individual models
and the arithmetic multi-model ensemble mean.

The results from the BMA indicate that the seasonal
rainfall, together with other extreme indices, is likely to
increase except for a decrease in CDD during pre-mon-
soon. However, the increasing rate of extreme indices is
generally larger in the pre-monsoon season than mon-
soon season. The average pre-monsoon rainfall of the
study area is projected to increase by 12.93% for near
future and 18.42% for far future under RCP4.5. Under the
RC8.5, it is projected to increase by 18.18% in the near
future and 23.85% in far future (Figure 10a). During the
monsoon, it is projected to increase by 4.96% in the near
future and 2.27% in the far future under the RCP4.5.
Under the RCP8.5, it is projected to increase 6.56% in the
near future and 6.40% in the far future. Therefore, in the
future, the study area is likely to experience more fre-
quent floods in pre-monsoon and monsoon seasons
under a warming climate. In particular, the intensity and
magnitude of flash floods in the pre-monsoon are likely
to increase more in the future as a result of the highly sig-
nificant increase (p-value <.05) of all extreme indices
related to the occurrence of the flash flood
(e.g., PRCPTOT, RX1, SDII, R95p, and R99p). This situa-
tion is projected to be more intense in 2071–2099 than in
2041–2070.

TABLE 6 p-values of average changes of rainfall extremes over the study area considering all model ensemble mean in different RCP

scenarios using Mann–Whitney U test. The extreme indices which changed significantly at 95% confidence level (p-value ≤ .05) are bold and

underlined

Index RCP4.5 (2041–2070) RCP4.5 (2071–2099) RCP8.5 (2041–2070) RCP8.5 (2071–2099)

Pre-monsoon RX1 0.013 0.000 0.000 0.000

RX5 0.100 0.003 0.012 0.000

CDD 0.003 0.020 0.001 0.002

CWD 0.234 0.581 0.919 0.323

SDII 0.221 0.038 0.011 0.000

PRCPTOT 0.008 0.001 0.002 0.000

R99P 0.023 0.001 0.001 0.000

R95P 0.025 0.001 0.001 0.000

R25 0.038 0.019 0.025 0.019

Monsoon RX1 0.149 0.963 0.041 0.007

RX5 0.621 0.853 0.239 0.120

CDD 0.756 0.090 0.797 0.075

CWD 0.058 0.846 0.034 0.273

SDII 0.193 0.233 0.079 0.000

PRCPTOT 0.362 0.700 0.182 0.093

R99P 0.286 0.877 0.145 0.006

R95P 0.677 0.805 0.322 0.057

R50 0.240 0.301 0.213 0.086
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These results indicate that the pre-monsoon season,
in particular, may witness the most significant changes in
rainfall in northeast Bangladesh. Seasonal rainfall
together with other extreme indices is likely to increase,
resulting in more frequent flash floods and putting the
harvest of the Boro crop, as well as infrastructure and
lives, at risk. This situation may intensify in the far future
under a higher emission scenario.
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